Make your own free website on Tripod.com


 

References


  • [1] B.Lindström and H.O.Zetterström, Borromean circles are impossible, Amer. Math. Monthly 98 (1991), 340-341.
  • [2] P.Cromwel, Borromean triangles in Viking art, Math. Intelligencer 17, 1 (1995), 3-4.
  • [3] H.S.M.Coxeter, Symmetrical combinations of three or four hollow triangles, Math. Intelligencer 16, 3 (1994), 25-30.
  • [4] S.V.Jablan, Modularity in art, http://www.mi.sanu.ac.yu/~jablans/, http://members.tripod.com/modularity/
  • [5] F.Ruskey, Survey of Venn diagrams - Borromean rings, http://www.emis.ams.org/journals/EJC/Surveys/ds5/borromean.html
  • [6] N.Seeman, DNA Borromean ring sequence, http://seemanlab4.chem.nyu.edu/borro.seq.html
  • [7] P.Cromwel, E.Beltrami and M.Rampichini, The Borromean rings, Math. Intelligencer 20, 1 (1998), 53-62.
  • [8] C.Liang and K.Mislow, On Borromean links, J. Math. Chemistry 16 (1994), 27-35.
  • [9] D.Rolfsen, Knots and links, Houston: Publish or Perish Press, 1990.
  • [10] C.Adams, The Knot Book, New York: W.H.Freeman, 1994.
  • [11] P.G.Tait, On knots, Trans. Roy. Soc. Edin. 28 (1876-77), 145-190.
  • [12] H.Brunn, Über Verkettung, S.-B.Math.-Phys.Kl. Bayer Akad. Wiss. 22 (1892), 77-99
  • [13] R.Scharein, KnotPlot Site, http://www.cs.ubc.ca/nest/imager/contributions/scharein/brunnian/brunnian.html
  • [14] D.Nagy, Wasan (Old Japaneze Mathematics): Art and Science, Symmetry: Culture and Science 6, 3 (1995), 400-403.
  • [15] K.Husimi, Symmetry in Mon and Mon-Yo, In Katachi U Symmetry (Ed. T.Ogawa, K.Miura, T.Masunari, D.Nagy), Springer, Tokio, Berlin,..., 1996, 75-80.
  • [16] K.Husimi, The World of Escher, as understood by Prof. K.Husimi, Forma 9 (1994), 157-169.
  • [17] P.Gerdes, Molecular Modelling of Fullerenes with Hexastrips, The Chemical Intelligencer, 4, 1 (1998), 40-45.



  • VisMath HOME




    * This work was supported by the Research Support Scheme of the OSI/HESP, grant No. 85/1997.